Menu Close

Publications by topic

Here you can find a list of our main research topics and related journal publications. Topic boundaries are obviously very blurred and some publications repeat multiple times.


Photonic Antennas and arrays

1.
S. Khajavi et al., “Experimental demonstration of a silicon nanophotonic antenna for far-field broadened optical phased arrays,” Photon. Res., PRJ 12(9), 1954–1961 (2024) [http://doi.org/10.1364/PRJ.515222].
1.
S. Khajavi et al., “Highly efficient ultra-broad beam silicon nanophotonic antenna based on near-field phase engineering,” Sci Rep 12(1), 18808 (2022) [http://doi.org/10.1038/s41598-022-23460-x].
1.
M. K. Dezfouli et al., “Efficient Bloch mode calculation of periodic systems with arbitrary geometry and open boundary conditions in the complex wavevector domain,” Opt. Express, OE 29(16), 26233–26243 (2021) [http://doi.org/10.1364/OE.432985].
1.
S. Khajavi et al., “Compact and highly-efficient broadband surface grating antenna on a silicon platform,” Opt. Express, OE 29(5), 7003–7014 (2021) [http://doi.org/10.1364/OE.416986].
1.
P. Ginel-Moreno et al., “Highly efficient optical antenna with small beam divergence in silicon waveguides,” Opt. Lett., OL 45(20), 5668–5671 (2020) [http://doi.org/10.1364/OL.404012].
1.
D. Melati et al., “Design of Compact and Efficient Silicon Photonic Micro Antennas with Perfectly Vertical Emission,” IEEE J. Select. Topics Quantum Electron. 27(1), 1–10 (2020) [http://doi.org/10.1109/JSTQE.2020.3013532].
1.
M. K. Dezfouli et al., “Perfectly vertical surface grating couplers using subwavelength engineering for increased feature sizes,” Opt. Lett., OL 45(13), 3701–3704 (2020) [http://doi.org/10.1364/OL.395292].
1.
D. Melati et al., “Mapping the global design space of nanophotonic components using machine learning pattern recognition,” Nat Commun 10(1), 1–9 (2019) [http://doi.org/10.1038/s41467-019-12698-1].

Inverse design and machine learning

1.
P. Manfredi, A. Waqas, and D. Melati, “Stochastic and multi-objective design of photonic devices with machine learning,” Sci Rep 14(1), 7162 (2024) [http://doi.org/10.1038/s41598-024-57315-4].
1.
P. Cheben et al., “Recent advances in metamaterial integrated photonics,” Adv. Opt. Photon., AOP 15(4), 1033–1105 (2023) [http://doi.org/10.1364/AOP.495828].
1.
P. Nuño Ruano et al., “Genetic optimization of Brillouin scattering gain in subwavelength-structured silicon membrane waveguides,” Optics & Laser Technology 161, 109130 (2023) [http://doi.org/10.1016/j.optlastec.2023.109130].
1.
M. K. Dezfouli et al., “Efficient Bloch mode calculation of periodic systems with arbitrary geometry and open boundary conditions in the complex wavevector domain,” Opt. Express, OE 29(16), 26233–26243 (2021) [http://doi.org/10.1364/OE.432985].
1.
D. Melati et al., “Design of Compact and Efficient Silicon Photonic Micro Antennas with Perfectly Vertical Emission,” IEEE J. Select. Topics Quantum Electron. 27(1), 1–10 (2020) [http://doi.org/10.1109/JSTQE.2020.3013532].
1.
M. K. Dezfouli et al., “Perfectly vertical surface grating couplers using subwavelength engineering for increased feature sizes,” Opt. Lett., OL 45(13), 3701–3704 (2020) [http://doi.org/10.1364/OL.395292].
1.
D. Melati et al., “Mapping the global design space of nanophotonic components using machine learning pattern recognition,” Nat Commun 10(1), 1–9 (2019) [http://doi.org/10.1038/s41467-019-12698-1].

Metasurfaces

1.
Y. Liu et al., “Broadband behavior of quadratic metalenses with a wide field of view,” Opt. Express, OE 30(22), 39860–39867 (2022) [http://doi.org/10.1364/OE.466321].

Dielectric metamaterials

1.
S. Khajavi et al., “Experimental demonstration of a silicon nanophotonic antenna for far-field broadened optical phased arrays,” Photon. Res., PRJ 12(9), 1954–1961 (2024) [http://doi.org/10.1364/PRJ.515222].
1.
R. F. de Cabo et al., “Broadband mode exchanger based on subwavelength Y-junctions,” Nanophotonics (2024) [http://doi.org/10.1515/nanoph-2024-0291].
1.
P. Cheben et al., “Recent advances in metamaterial integrated photonics,” Adv. Opt. Photon., AOP 15(4), 1033–1105 (2023) [http://doi.org/10.1364/AOP.495828].
1.
P. Nuño Ruano et al., “Genetic optimization of Brillouin scattering gain in subwavelength-structured silicon membrane waveguides,” Optics & Laser Technology 161, 109130 (2023) [http://doi.org/10.1016/j.optlastec.2023.109130].
1.
S. Khajavi et al., “Highly efficient ultra-broad beam silicon nanophotonic antenna based on near-field phase engineering,” Sci Rep 12(1), 18808 (2022) [http://doi.org/10.1038/s41598-022-23460-x].
1.
T. T. D. Dinh et al., “Mid-infrared Fourier-transform spectrometer based on metamaterial lateral cladding suspended silicon waveguides,” Opt. Lett., OL 47(4), 810–813 (2022) [http://doi.org/10.1364/OL.450719].
1.
V. Vakarin et al., “Metamaterial-Engineered Silicon Beam Splitter Fabricated with Deep UV Immersion Lithography,” Nanomaterials 11(11), 2949 (2021) [http://doi.org/10.3390/nano11112949].
1.
M. K. Dezfouli et al., “Efficient Bloch mode calculation of periodic systems with arbitrary geometry and open boundary conditions in the complex wavevector domain,” Opt. Express, OE 29(16), 26233–26243 (2021) [http://doi.org/10.1364/OE.432985].
1.
L. Puts et al., “Anti-reflection subwavelength gratings for InP-based waveguide facets,” Opt. Lett., OL 46(15), 3701–3704 (2021) [http://doi.org/10.1364/OL.431353].
1.
S. Khajavi et al., “Compact and highly-efficient broadband surface grating antenna on a silicon platform,” Opt. Express, OE 29(5), 7003–7014 (2021) [http://doi.org/10.1364/OE.416986].
1.
P. Ginel-Moreno et al., “Highly efficient optical antenna with small beam divergence in silicon waveguides,” Opt. Lett., OL 45(20), 5668–5671 (2020) [http://doi.org/10.1364/OL.404012].
1.
M. K. Dezfouli et al., “Perfectly vertical surface grating couplers using subwavelength engineering for increased feature sizes,” Opt. Lett., OL 45(13), 3701–3704 (2020) [http://doi.org/10.1364/OL.395292].
1.
P. Cheben et al., “Bragg filter bandwidth engineering in subwavelength grating metamaterial waveguides,” Opt. Lett., OL 44(4), 1043–1046 (2019) [http://doi.org/10.1364/OL.44.001043].

Stochastic tools for photonics

1.
P. Manfredi, A. Waqas, and D. Melati, “Stochastic and multi-objective design of photonic devices with machine learning,” Sci Rep 14(1), 7162 (2024) [http://doi.org/10.1038/s41598-024-57315-4].
1.
A. Waqas, P. Manfredi, and D. Melati, “Performance Variability Analysis of Photonic Circuits With Many Correlated Parameters,” Journal of Lightwave Technology 39(14), 4737–4744 (2021) [http://doi.org/10.1109/JLT.2021.3076023].
1.
A. Waqas et al., “Efficient variability analysis of photonic circuits by stochastic parametric building blocks,” IEEE Journal of Selected Topics in Quantum Electronics, 1–1 (2020) [http://doi.org/10.1109/JSTQE.2019.2950761].
1.
A. Waqas et al., “Stochastic process design kits for photonic circuits based on polynomial chaos augmented macro-modelling,” Opt. Express 26(5), 5894–5907 (2018) [http://doi.org/10.1364/OE.26.005894].
1.
T.-W. Weng et al., “Stochastic simulation and robust design optimization of integrated photonic filters,” Nanophotonics 6(1), 299–308 (2017) [http://doi.org/10.1515/nanoph-2016-0110].
1.
A. Waqas, D. Melati, and A. Melloni, “Sensitivity Analysis and Uncertainty Mitigation of Photonic Integrated Circuits,” Journal of Lightwave Technology 35(17), 3713–3721 (2017) [http://doi.org/10.1109/JLT.2017.2714862].

Photonic Devices and Circuits

1.
Y. Yang et al., “Generation of multiple user-defined dispersive waves in a silicon nitride waveguide,” Optica, OPTICA 11(8), 1070–1076 (2024) [http://doi.org/10.1364/OPTICA.521625].
1.
V. Vitali et al., “Fully integrated and broadband Si-rich silicon nitride wavelength converter based on Bragg scattering intermodal four-wave mixing,” Photon. Res., PRJ 12(3), A1–A10 (2024) [http://doi.org/10.1364/PRJ.506691].
1.
V. Vitali et al., “L- to U-Band Wavelength Conversion of QPSK Signals Using Intermodal Four-Wave Mixing,” IEEE Photonics Technology Letters, 1–1 (2024) [http://doi.org/10.1109/LPT.2024.3426925].
1.
S. Janz et al., “Optical wavefront phase-tilt measurement using Si-photonic waveguide grating couplers,” Opt. Lett., OL 48(23), 6236–6239 (2023) [http://doi.org/10.1364/OL.506013].
1.
D. Melati et al., “Athermal echelle grating and tunable echelle grating demultiplexers using a Mach-Zehnder interferometer launch structure,” Opt. Express, OE 30(9), 14202–14217 (2022) [http://doi.org/10.1364/OE.453273].
1.
R. Cheriton et al., “Spectrum-free integrated photonic remote molecular identification and sensing,” Opt. Express, OE 28(19), 27951–27965 (2020) [http://doi.org/10.1364/OE.400061].
1.
S. Janz et al., “Photonic temperature and wavelength metrology by spectral pattern recognition,” Opt. Express, OE 28(12), 17409–17423 (2020) [http://doi.org/10.1364/OE.394642].
1.
D. Melati et al., “Compact and Low Crosstalk Echelle Grating Demultiplexer on Silicon-On-Insulator Technology,” Electronics 8(6), 687 (2019) [http://doi.org/10.3390/electronics8060687].
1.
D. Melati et al., “Athermal echelle grating filter in silicon-on-insulator using a temperature-synchronized input,” Opt. Express, OE 26(22), 28651–28660 (2018) [http://doi.org/10.1364/OE.26.028651].
1.
D. Melati et al., “Wideband Integrated Optical Delay Line Based on a Continuously Tunable Mach-Zehnder Interferometer,” IEEE Journal of Selected Topics in Quantum Electronics 24(1), 1–8 (2018) [http://doi.org/10.1109/JSTQE.2017.2723955].
1.
A. Waqas, D. Melati, and A. Melloni, “Cascaded Mach-Zehnder architectures for photonic integrated delay lines,” IEEE Photonics Technology Letters 30(21), 1830–1833 (2018) [http://doi.org/10.1109/LPT.2018.2865703].
1.
D. Melati et al., “Integrated all-optical MIMO demultiplexer for mode- and wavelength-division-multiplexed transmission,” Opt. Lett. 42(2), 342–345 (2017) [http://doi.org/10.1364/OL.42.000342].
1.
D. Melati, A. Alippi, and A. Melloni, “Reconfigurable photonic integrated mode (de)multiplexer for SDM fiber transmission,” Opt. Express 24(12), 12625–12634 (2016) [http://doi.org/10.1364/OE.24.012625].
1.
D. Melati et al., “ContactLess Integrated Photonic Probe for light monitoring in indium phosphide-based devices,” IET Optoelectronics 9(4), 146–150 (2015) [http://doi.org/10.1049/iet-opt.2014.0159].

Process Design Kits and device models

1.
A. Waqas et al., “Efficient variability analysis of photonic circuits by stochastic parametric building blocks,” IEEE Journal of Selected Topics in Quantum Electronics, 1–1 (2020) [http://doi.org/10.1109/JSTQE.2019.2950761].
1.
D.-X. Xu et al., “Empirical model for the temperature dependence of silicon refractive index from O to C band based on waveguide measurements,” Opt. Express, OE 27(19), 27229–27241 (2019) [http://doi.org/10.1364/OE.27.027229].
1.
A. Waqas et al., “Stochastic process design kits for photonic circuits based on polynomial chaos augmented macro-modelling,” Opt. Express 26(5), 5894–5907 (2018) [http://doi.org/10.1364/OE.26.005894].
1.
A. Waqas et al., “An Improved Model to Predict the Temperature Dependence of Refractive Index of InP-based Compounds,” Wireless Personal Communications, 607–615 (2017) [http://doi.org/10.1007/s11277-016-3913-5].
1.
D. Melati, A. Alippi, and A. Melloni, “Waveguide-Based Technique for Wafer-Level Measurement of Phase and Group Effective Refractive Indices,” Journal of Lightwave Technology 34(4), 1293–1299 (2016) [http://doi.org/10.1109/JLT.2015.2500919].
1.
D. Melati et al., “Wavelength and composition dependence of the thermo-optic coefficient for InGaAsP-based integrated waveguides,” Journal of Applied Physics 120(21), 213102 (2016) [http://doi.org/10.1063/1.4970937].
1.
M. Smit et al., “An introduction to InP-based generic integration technology,” Semiconductor Science and Technology 29(8), 083001 (2014) [http://doi.org/10.1088/0268-1242/29/8/083001].
1.
D. Melati et al., “Validation of the Building-Block-Based Approach for the Design of Photonic Integrated Circuits,” Lightwave Technology, Journal of 30(23), 3610–3616 (2012) [http://doi.org/10.1109/JLT.2012.2223658].

Scattering, losses, reflections

1.
D. Melati et al., “Optical radiative crosstalk in integrated photonic waveguides,” Opt. Lett. 39(13), 3982–3985 (2014) [http://doi.org/10.1364/OL.39.003982].
1.
D. Melati, A. Melloni, and F. Morichetti, “Real photonic waveguides: guiding light through imperfections,” Adv. Opt. Photon. 6(2), 156–224 (2014) [http://doi.org/10.1364/AOP.6.000156].
1.
E. Kleijn et al., “Multimode Interference Couplers With Reduced Parasitic Reflections,” Photonics Technology Letters, IEEE 26(4), 408–410 (2014) [http://doi.org/10.1109/LPT.2013.2295624].
1.
D. Melati, F. Morichetti, and A. Melloni, “A unified approach for radiative losses and backscattering in optical waveguides,” Journal of Optics 16(5), 055502 (2014) [http://doi.org/10.1088/2040-8978/16/5/055502].
1.
D. Melati, F. Morichetti, and A. Melloni, “Modeling reflections induced by waveguide transitions,” Optical and Quantum Electronics 45(4), 309–316 (2013) [http://doi.org/10.1007/s11082-012-9625-5].